
Plugin Structure

Manifest
Plugin-Class
Long-Name
Plugin-Dependencies

Classloader
Static Resources
Index.jelly for Your Plugin-derived Class
Testing With Jenkins

Debug Plugin Layout: .hpl
Starting Jenkins with your Plugin

A plugin is really just a jar file that follows a certain set of conventions, as described below:

foo.hpi
 +- META-INF
 | +- MANIFEST.MF
 +- WEB-INF
 | +- classes
 | +- lib
 +- (static resources)

A plugin needs to have extension. The file name body ("foo" portion) of the file name is used as the "short name" of a plugin, and it an .hpi
uniquely distingusihes a plugin.
As you can see, the structure is similar to a WAR file, but there's no .web.xml
MANIFEST.MF needs to contain a few additional entries. More on this later.
WEB-INF/classes can have class files that constitute plugins, Jelly view files, and Jelly tag libraries based on tag files. Alternatively, some or all
of them can be packaged into a jar and placed into .WEB-INF/lib
WEB-INF/lib can have *.jar files, and those are loaded and made available to a plugin , along with the contents of ClassLoader WEB-INF

./classes
Static resources, such as images, HTML files, CSS stylesheets, JavaScript files, etc, can be placed at the top of an file (just like a WAR file, .hpi
again.)

Use the target to create this structure. Use to create the file.hpi:create hpi:hpi .hpi

Manifest
META-INF/MANIFEST.MF can have all the normal entries, but it needs to contain two more entries for Jenkins in its main section.

Plugin-Class

This attribute must have the fully qualified class name of the class that derives from Plugin. Jenkins instantiates this instance to activate a plugin, and
everything starts from there. Consequently, a plugin must have one Plugin-derived class. This is the Jenkins plugin version of the Main-Class attribute.

Long-Name

This optional attribute can have a human-readable one line description of the plugin. This is used as "the name" for users (whereas the short name is used
as the name internally in Jenkins.) When this attribute is not present, the short name is used as the long name.

Plugin-Dependencies

This optional attribute can have a list of comma-separated plugin short names/versions that are required for this plugin to run. The classes and libraries of
those plugins are made visible to this plugin's classloader, so that your plugin can rely on them.
This mechanism allows a plugin to define its own extensibility point, and have other plugins provide implemenations.

Plugin-Dependencies: module-name:version,module2-name:version

Classloader

When you use Maven to develop a Jenkins plugin, Maven does most of this using .hpi

Per default Jenkins loads every jar from , along with the contents of after the classes and libraries of the core. If you WEB-INF/lib WEB-INF/classes
want to have your own libaries loaded before these (e.g. you want a newer version of velocity or an other library), you can configure your plugin to use a
different classloader strategy by telling the hpi plugin in your pom.xml:

pluginFirstClassLoader

<build>
 <plugins>
 <plugin>
 <groupId>org.jenkins-ci.tools</groupId>
 <artifactId>maven-hpi-plugin</artifactId>
 <configuration>
 <pluginFirstClassLoader>true</pluginFirstClassLoader>
 </configuration>
 </plugin>
 </plugins>
</build>

Static Resources
Static resources inside an file will be made accessible at . For example, if you have .hpi ${JENKINS_CONTEXT_PATH}/plugin/SHORTNAME/ abc

 in , and if Jenkins is deployed on , then the URL /def.png foo.hpi http://localhost/jenkins/ http://localhost/jenkins/plugin/foo
 would display the PNG file./abc/def.png

Index.jelly for Your -derived ClassPlugin
Your class (that you named in manifest entry) should have view file, which should render 1-2 paragraph worth of Plugin Plugin-Class index.jelly
the detailed description of your plugin, perhaps with version numbers, link to the homepage, etc. This jelly script will be used in the plugin configuration
page so that the user can learn more about a plugin.

Testing With Jenkins
You can test your plugin with a Jenkins instance to use it as a user would. You can also do this with the debugger using .mvnDebug

Debug Plugin Layout: .hpl

The format is primarily meant to be a distribution format. Just like no one debugs the web application by creating a war and deploying it, Jenkins .hpi
provides another plugin layout called (for "Hudson plugin link"), which is targeted for plugin developers to improve productivity..hpl

You can create and install the file into a Jenkins installation using .hpl mvn hpi:hpl -DhudsonHome=/path/to/jenkinsInstall

The hpl file can be placed in just like hpi files. But hpl file just contains a single line of text that points to a manifest file, like $JENKINS_HOME/plugins
this:../path/to/your/plugin/workspace/manifest-debug.mf The file pointed by this is a manifest file. It has the same custom attributes as defined above for ME

, but it defines a few more custom attributes that allow a plugin developer to specify various pieces of a plugin in different locations TA-INF/MANIFEST.MF
in a file system.

Plugin-Class: hudson.plugins.jwsdp_sqe.PluginImpl
Class-Path: ./build/classes ./views ./lib/reporter.jar
Long-Name: JWSDP SQE Test Result Plugin
Resource-Path" ./resources

For example, the above sample states that the static resources of a plugin shall be loaded from the , and class files manifest-debug.mf ./resources
from , Jelly view files in , and a library jar file shall be made available to the plugin classloader. Absolute ./build/classes ./views reporter.jar
path names can be also used.

This mechanism allows a plugin developer to avoid assembly steps. Also, changes to static resources and Jelly views will be reflected instanteneously
(provided that you set the system property to true when you start the web container.stapler.jelly.noCache

Starting Jenkins with your Plugin

You can test your plugin by starting Jenkins using . You can do this with a copy of the mvn hpi:run -DhudsonHome=/path/to/jenkinsInstall
Jenkins code that you have checked out if you wish to debug using the source. The path is the directory that you checked out.jenkinsInstall jenkins

http://localhost/hudson/
http://localhost/hudson/plugin/foo/abc/def.png
http://localhost/hudson/plugin/foo/abc/def.png

	Plugin Structure

