Plugin Structure

® Manifest

® Plugin-Class

® |ong-Name

® Plugin-Dependencies
Classloader
Static Resources
Index.jelly for Your Plugin-derived Class
Testing With Jenkins

® Debug Plugin Layout: .hpl

® Starting Jenkins with your Plugin

@ When you use Maven to develop a Jenkins plugin, Maven does most of this using hpi .

A plugin is really just a jar file that follows a certain set of conventions, as described below:

f oo. hpi
+- NMETA- I NF
| +- MANI FEST. MF
+- VEB- | NF
| +- cl asses
| + lib

+- (static resources)

® A plugin needs to have an . hpi extension. The file name body ("foo" portion) of the file name is used as the "short name" of a plugin, and it
uniquely distingusihes a plugin.

® As you can see, the structure is similar to a WAR file, but there's no web. xni .

* MANI FEST. MF needs to contain a few additional entries. More on this later.

® \VAEB- | NF/ cl asses can have class files that constitute plugins, Jelly view files, and Jelly tag libraries based on tag files. Alternatively, some or all
of them can be packaged into a jar and placed into WEB- | NF/ | i b.

® VEB- | NF/ | i b can have * jar files, and those are loaded and made available to a plugin Cl assLoader , along with the contents of WEB- | NF
/ cl asses.

® Static resources, such as images, HTML files, CSS stylesheets, JavaScript files, etc, can be placed at the top of an . hpi file (just like a WAR file,

again.)

Use the hpi : cr eat e target to create this structure. Use hpi : hpi to create the . hpi file.

Manifest

META- | NF/ MANI FEST. MF can have all the normal entries, but it needs to contain two more entries for Jenkins in its main section.

Plugin-Class

This attribute must have the fully qualified class nhame of the class that derives from Plugin. Jenkins instantiates this instance to activate a plugin, and
everything starts from there. Consequently, a plugin must have one Plugin-derived class. This is the Jenkins plugin version of the Main-Class attribute.

Long-Name

This optional attribute can have a human-readable one line description of the plugin. This is used as "the name" for users (whereas the short name is used
as the name internally in Jenkins.) When this attribute is not present, the short name is used as the long name.

Plugin-Dependencies

This optional attribute can have a list of comma-separated plugin short names/versions that are required for this plugin to run. The classes and libraries of
those plugins are made visible to this plugin's classloader, so that your plugin can rely on them.
This mechanism allows a plugin to define its own extensibility point, and have other plugins provide implemenations.

Pl ugi n- Dependenci es: nodul e- nanme: ver si on, nodul e2- nane: ver si on

Classloader

Per default Jenkins loads every jar from WEB- | NF/ | i b, along with the contents of VEB- | NF/ cl asses after the classes and libraries of the core. If you
want to have your own libaries loaded before these (e.g. you want a newer version of velocity or an other library), you can configure your plugin to use a
different classloader strategy by telling the hpi plugin in your pom.xml:

pluginFirstClassLoader

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. j enki ns-ci . t ool s</ groupl d>
<artifact!ld>maven- hpi - plugin</artifactld>
<configuration>
<pl ugi nFi r st G assLoader >t rue</ pl ugi nFi r st d assLoader >
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Static Resources

Static resources inside an . hpi file will be made accessible at ${ JENKI NS_CONTEXT_PATH} / pl ugi n/ SHORTNAME/ . For example, if you have abc
/ def. png infoo. hpi, and if Jenkins is deployed on htt p: / /| ocal host /] enki ns/, thenthe URL htt p://| ocal host/j enki ns/ pl ugi n/ f oo
/ abc/ def . png would display the PNG file.

Index.jelly for Your Pl ugi n-derived Class

Your Pl ugi n class (that you named in Pl ugi n- Cl ass manifest entry) should have i ndex. j el | y view file, which should render 1-2 paragraph worth of
the detailed description of your plugin, perhaps with version numbers, link to the homepage, etc. This jelly script will be used in the plugin configuration
page so that the user can learn more about a plugin.

Testing With Jenkins

You can test your plugin with a Jenkins instance to use it as a user would. You can also do this with the debugger using mvnDebug.

Debug Plugin Layout: .hpl

The . hpi format is primarily meant to be a distribution format. Just like no one debugs the web application by creating a war and deploying it, Jenkins
provides another plugin layout called . hpl (for "Hudson plugin link"), which is targeted for plugin developers to improve productivity.

You can create and install the . hpl file into a Jenkins installation using nvn hpi : hpl - DhudsonHone=/ pat h/t o/ j enki nsl nstal |

The hpl file can be placed in $JENKI NS_HOVE/ pl ugi ns just like hpi files. But hpl file just contains a single line of text that points to a manifest file, like
this:../path/to/your/plugin/workspace/manifest-debug.mf The file pointed by this is a manifest file. It has the same custom attributes as defined above for MVE
TA- | NF/ MANI FEST. MF, but it defines a few more custom attributes that allow a plugin developer to specify various pieces of a plugin in different locations
in a file system.

Pl ugi n-d ass: hudson. pl ugi ns. j wsdp_sqe. Pl ugi nl npl
Class-Path: ./build/classes ./views ./lib/reporter.jar
Long- Nane: JWBDP SQE Test Result Plugin

Resour ce-Pat h" ./resources

For example, the above sample nani f est - debug. nf states that the static resources of a plugin shall be loaded from the . / r esour ces, and class files
from ./ bui | d/ cl asses, Jelly view filesin . / vi ews, and a library jar file r epor t er . j ar shall be made available to the plugin classloader. Absolute
path names can be also used.

This mechanism allows a plugin developer to avoid assembly steps. Also, changes to static resources and Jelly views will be reflected instanteneously
(provided that you set the system property st apl er. j el | y. noCache to true when you start the web container.

Starting Jenkins with your Plugin

You can test your plugin by starting Jenkins using mvn hpi : run - DhudsonHone=/ pat h/ t o/ j enki nsl nstal | . You can do this with a copy of the
Jenkins code that you have checked out if you wish to debug using the source. The j enki nsl nst al | path is the j enki ns directory that you checked out.

http://localhost/hudson/
http://localhost/hudson/plugin/foo/abc/def.png
http://localhost/hudson/plugin/foo/abc/def.png

	Plugin Structure

