
Jenkins TestLink Plug-in Tutorial

Bruno P. Kinoshita

César Fernandes de Almeida

Jenkins TestLink Plug-in Tutorial
Bruno P. Kinoshita

César Fernandes de Almeida

French Translation.: Flóreal Toumikian, Olivier Renault

Review and suggestions on how explain some topics of this tutorial.: Oliver Merkel

Abstract

The Jenkins TestLink Plug-in Tutorial is intended to provide a better understanding on how to use the plug-in to integrate

Jenkins and TestLink. It is an Open Source project, so contributions and suggestions are welcome.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial iii

Table of Contents

1. An Introduction to Jenkins .. 1

2. An Introduction to TestLink ... 3

3. Jenkins and TestLink Integration ... 5

4. TestLink Configuration ... 6

4.1. Installing TestLink ... 6

4.2. Creating a Test Project .. 9

4.3. Creating and assigning a Custom Field ... 11

4.4. Specifying Test Suite and Test Cases .. 13

4.5. Create a Test Plan and add the Test Cases .. 16

5. Jenkins Configuration ... 20

5.1. Installing Jenkins ... 20

5.2. Installing and configuring Jenkins TestLink Plug-in ... 20

5.3. Creating a job in Jenkins .. 22

5.4. Explaining the Job configuration parameters ... 25

TestLink Version .. 26

Test Project Name .. 26

Test Plan name .. 26

Build Name .. 26

Custom fields ... 26

Key Custom Field .. 26

Single Build Steps .. 26

Before iterating all test cases Build Steps .. 26

Iterative Test Build Steps .. 26

After iterating all test cases Build Steps ... 26

JUnit, TestNG and TAP report files patterns. ... 26

Transactional execution? ... 27

Failed tests mark build as failure ... 27

Environment variables .. 27

6. Executing Automated Test Cases .. 28

7. Strategies to find Test Results ... 32

7.1. JUnit ... 32

7.2. TestNG ... 32

7.3. TAP - Test Anything Protocol .. 33

8. Advantages of using Jenkins TestLink Plug-in ... 34

9. Appendix ... 35

9.1. Adding attachments to your test results ... 35

9.2. Using Platforms ... 35

9.3. Plug-in behavior in distributed environments ... 36

9.4. How to use the plug-in with SSL or basic authentication? .. 36

Bibliography .. 37

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 1

1. An Introduction to Jenkins

Jenkins (née Hudson) is a continuous integration server written in Java. It can be downloaded from http://

www.jenkins-ci.org [http://www.jenkins-ci.org] as an executable war. It means that you can run it with java -
jar jenkins.war. Jenkins comes with an embedded Servlet Container (Winstone) but you also have the option

to deploy the war to an application server like Tomcat, Jetty, JBoss, etc. Jenkins does not use any database to

store its configuration. Jenkins uses XStream to save data as XML files.

With Jenkins you can create, monitor and schedule jobs. There are plug-ins for almost anything that you may

think about, from different SCMs (git, mercury, SVN, CVS) to plug-ins for integrating your Jenkins with

Selenium, Gerrit, TestLink and other tools.

Here is a summarized list of Jenkins features that is available in Jenkins Wiki [http://wiki.jenkins-ci.org/

display/JENKINS/TestLink+Plugin]:

1. Easy installation

2. Easy configuration

3. Change set support

4. Permanent links

5. RSS/E-mail/IM Integration

6. After-the-fact-tagging

7. JUnit/TestNG test reporting

8. Distributed builds

9. File fingerprinting

10.Plugin Support

For this guide you will need to download the latest and greatest version of Jenkins. At the moment that this

guide is being written, the current version is 1.433. However it is very likely that what you will learn here will

work with newer versions of Jenkins. Jenkins development team does a great job not only developing cool

features, but also keeping backward compatibility between versions.

http://www.jenkins-ci.org
http://www.jenkins-ci.org
http://www.jenkins-ci.org
http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 2

Jenkins is licensed under the MIT License and its code is hosted at GitHub - http://github.com/jenkinsci [http://

github.com/jenkinsci].

http://github.com/jenkinsci
http://github.com/jenkinsci
http://github.com/jenkinsci

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 3

2. An Introduction to TestLink
TestLink is an open source test management tool written in PHP. In order to install TestLink you will need

a HTTP server with PHP 5 and a database. The databases currently supported by TestLink out of the box

are MySQL, Postgre SQL and MS SQL, although there are users that managed to use Oracle too. You can

download it from http://www.teamst.org [http://www.teamst.org].

In TestLink you have, among other features, Test Plans, Requirement management, Baselines, Custom Fields,

Test Suite with Test Cases and Reporting. For external access, there is an XML-RPC API available (it is not

enabled by default). Other two nice features in TestLink are the versioning of the some entities, like Test Case

and Requirements, and the ability to import and export data in different formats.

There are bindings for the TestLink XML-RPC API available for Java, Perl, PHP, Ruby and other programming

languages. The integration between Jenkins and TestLink is done using TestLink Java API - http://

testlinkjavaapi.sourceforge.net [http://testlinkjavaapi.sourceforge.net].

At the moment that this guide is being written the latest version of TestLink is 1.9.3. While the Jenkins version

is not a big issue for this integration, the same cannot be said about TestLink. This guide is intended for

Testlink 1.9.3 XML-RPC API. In case there are other versions available at the moment that you are reading

http://www.teamst.org
http://www.teamst.org
http://testlinkjavaapi.sourceforge.net
http://testlinkjavaapi.sourceforge.net
http://testlinkjavaapi.sourceforge.net

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 4

this guide, please consult the plug-in Wiki [http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin] for

further information on this.

TestLink is licensed under the GPL License and its code is hosted at gitorious - http://www.gitorious.org/

testlink-ga/testlink-code [http://www.gitorious.org/testlink-ga/testlink-code].

http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://www.gitorious.org/testlink-ga/testlink-code
http://www.gitorious.org/testlink-ga/testlink-code
http://www.gitorious.org/testlink-ga/testlink-code

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 5

3. Jenkins and TestLink Integration

The integration between Jenkins and TestLink can be achieved with Jenkins TestLink Plug-in. The plug-in

resides in Jenkins, being able to use some of its nice features like executing multiple jobs, scheduling jobs,

distributed execution and a plethora of plug-ins. To retrieve the data from TestLink for tests, as well as to report

the test case execution status to TestLink, the plug-in uses TestLink XML-RPC API.

This way, while Jenkins handles the execution of jobs and tasks such as downloading source code from an

SCM, TestLink maintains the structure of your tests, as well as other assets as Test Plan, Custom Fields, Reports

and Baselines.

We will see how to configure our envinronment for this integration throughout the next chapters. While it is

good to have a good written explanation on how this integration works, probably it is a lot easier to understand

how it works with a hands-on. The rest of this guide explains how to configure Jenkins and TestLink to run

automated tests from a sample test project. This test project is a Java project that uses Maven and TestNG

and you can download the source code from https://github.com/kinow/jenkins-testlink-plugin-tutorial [https://

github.com/kinow/jenkins-testlink-plugin-tutorial] (as well as the DocBook source for this book).

The current version of Jenkins TestLink Plug-in while this book is being written is 3.0.2.

Jenkins TestLink Plug-in is licensed under the MIT License and its code is stored in github - http://github.com/

jenkinsci/testlink-plugin [http://github.com/jenkinsci/testlink-plugin].

https://github.com/kinow/jenkins-testlink-plugin-tutorial
https://github.com/kinow/jenkins-testlink-plugin-tutorial
https://github.com/kinow/jenkins-testlink-plugin-tutorial
http://github.com/jenkinsci/testlink-plugin
http://github.com/jenkinsci/testlink-plugin
http://github.com/jenkinsci/testlink-plugin

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 6

4. TestLink Configuration

4.1 Installing TestLink

In this part of the tutorial we will show how to install and configure TestLink. Let's start by downloading

testlink-1.9.3.tar.gz from http://www.teamst.org. Decompress it with tar -zxvf testlink-1.9.3.tar.gz. Move the

directory created to your HTTP server root directory and open http://localhost/testlink-1.9.3 [http://localhost/

testlink-1.9.3] in your browser.

http://www.teamst.org
http://localhost/testlink-1.9.3
http://localhost/testlink-1.9.3
http://localhost/testlink-1.9.3

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 7

Now the installation wizard will guide you through the rest of the installation. But before going on, we need

to create a database in MySQL.

mysql> create database testlink;

The next step is to create a user that TestLink will use to access the database.

mysql> grant all privileges on testlink.* to 'testlink' identified by 'testlink';

mysql> flush privileges;

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 8

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 9

If everything worked out correctly you should be asked to log in with user admin and password admin. The

examples in this tutorial require you to have a user with administrator rights in TestLink.

By default, the XML-RPC comes disabled in TestLink. Let's enable it by editing config.inc.php, located in

TestLink root folder.

$tlCfg->api->enabled = TRUE;

Finally, let's make sure that the attachments retrieved from the database are ordered by its ID. This way, the

order of attachments will be preserved in TestLink. We could use the date that the attachment was inserted in

database, however the precision of the date_added column is in seconds, what could lead to inconsistencies in

the way that attachments are displayed in TestLink.

$g_attachments->order_by = " ORDER BY id ASC ";

4.2 Creating a Test Project

When you log in by the first time in TestLink it is showed to you a form to create a Test Project. After creating

a test project you will be able to create test plans, requirements, specify and execute your tests.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 10

Create a test project with name My first project, prefix MFP and make sure the following options are checked:

Enable Requirements feature, Enable Testing Priority, Enable Test Automation (API keys), Enable Inventory,

Active and Public. Click on Create button.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 11

If the following screen is not displayed, review your previous steps or consult TestLink documentation for

further assistance.

4.3 Creating and assigning a Custom Field

Click on the Project item of the top menu to be redirected to the main screen. Now we will create the custom

field used for automation. The plug-in uses this custom field's value to link a test case in TestLink with a test

result from your Jenkins build.

Click on Define Custom Fields under the Test Project options box. Now create a custom field using the name

Java Class, label Java Class, available for Test Case, type string, enable on Test Spec Design and display on

test execution No. The plug-in retrieves the custom fields by its name and not by the value in its label.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 12

The last step now is to assign this custom field to be used in our test project. Go back to the main screen and

click on Assign Custom Fields. It will take you to a screen with the list of the available custom fields. Select

the Java Class custom field and click on the Assign button.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 13

4.4 Specifying Test Suite and Test Cases

For those who work with tests this part may be slightly easier than the previous sections. What we are going

to do now is to create a test suite and some test cases. In TestLink your test cases are kept under a test suite

which is, by its turn, under a test project.

Back to the main screen, in the top menu you will see the option Test Specification. Click on this option. The

test specification screen is quite simple. On the left you have the navigator, with the settings, filter and the tree

of test suites and test cases. Start clicking on your test project to see the test suite operations available.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 14

Create a test suite with any name that you want. This field is not important for this tutorial. Once created, your

test suite will be displayed in the tree on the left. Now click on the test suite in the tree to see the available

test case operations.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 15

Create a test case with any title or summary. The important information on this screen for the automation are the

execution type and the Java class (custom field created in the previous step). In execution type select Automated

and for Java class fill with the java class hudson.plugins.testlink.examples.TestCurrentTime (present in the

example project).

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 16

4.5 Create a Test Plan and add the Test Cases

This is the last step for the TestLink configuration. However before we start this step, there is an important

concept in TestLink: Builds.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 17

In TestLink, you create a test plan outlining how you will test your application under test. Once you have a test

plan you can start to add test cases to your test plan, and then execute the test plan.

A build in TestLink can be seen as the execution of a test plan. Once the test plan is executed you are not

allowed to edit the test cases of this test plan (it wouldn't be right to change the scope or exit criteria of a test

case after it had already been executed).

Go back to the main screen and click on the Test Plan Management option available under the Test Plan box

on the right of the scren. Create a test plan with the name My first test plan, any description and make sure

that Active and Public are checked.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 18

In the last box on the right of the screen, click on Add / Remove Test Cases and add the test case that you

created to your test plan.

Create a Build in TestLink is optional, as the plug-in automatically creates a new build if there is none with the

name that you provided in the Jenkins job configuration page. When you go back to your test plan, you should

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 19

see more options available in the Test Plan box and two other boxes: Test Execution and Test Plan contents,

as well as other options available in the top menu.

We are done with TestLink for now, the next step is to configure Jenkins.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 20

5. Jenkins Configuration

5.1 Installing Jenkins

Download jenkins.war from http://www.jenkins-ci.org. Now open a terminal and execute java -jar
jenkins.war. This will initiate Jenkins in port 8080 by default (if you need to change that port, use --

httpPort=9999).

Jenkins creates a default workspace for you at ~/.jenkins or it uses the folder specified in JENKINS_HOME

environment variable.

Go to http://localhost:8080 to check if your installation is working. We will call this page as main screen from

now on. The examples in this tutorial require you to have administrator rights in Jenkins.

5.2 Installing and configuring Jenkins TestLink Plug-in

The plug-ins in Jenkins are distributed from a central update site. Select the option Manage Jenkins in the left

menu and look for the Manage Plugins option. Clicking on Available will bring you the list of plug-ins ready

to be installed in your Jenkins installation.

Just check the check box besides the plug-in name on the list and click on Install to install the plug-in. Jenkins

will download and install the plug-in automatically for you. Restart Jenkins to enable your plug-in.

http://www.jenkins-ci.org
http://localhost:8080

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 21

After restarting Jenkins, go to Manage Jenkins again, this time click on Configure System option and look for

the TestLink section. Fill the TestLink configuration form with a name for your TestLink installation, the URL

of the XML-RPC API and your devKey.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 22

By default the TestLink XML-RPC API URL is http://<host>:<port>/lib/api/xmlrpc.php. The devKey can be

obtained by entering TestLink, clicking on My Settings (top menu) and generating a new devKey, if there is

none yet. If you cannot see the API interface section in My Settings page, then it is very likely that you didn't

enable it yet. Go back to Chapter 4, TestLink Configuration to review your work.

5.3 Creating a job in Jenkins

In order to create a new job all that you need to do is click on New Job and give it a name. Choose the option

to create a Free-style project.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 23

Our job will use git to retrieve the test automation project. This is the project mentioned in Chapter 3,

Jenkins and TestLink Integration, and can be found at https://github.com/kinow/jenkins-testlink-plugin-

tutorial [https://github.com/kinow/jenkins-testlink-plugin-tutorial]. In a real world project you probably will

use a SCM (SVN, Git, CVS, etc) to store your test automation project.

https://github.com/kinow/jenkins-testlink-plugin-tutorial
https://github.com/kinow/jenkins-testlink-plugin-tutorial
https://github.com/kinow/jenkins-testlink-plugin-tutorial

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 24

Click on Add build step button to expand its options and then click on Invoke TestLink. It will show a new form

with options to integrate your Jenkins job with TestLink. Fill this form with the following information created

in TestLink throughout Chapter 4, TestLink Configuration.

Configure your job with the following settings.

Table 5.1. Jenkins TestLink Plug-in settings explanation

TestLink Version Select the version that you created in the global

configuration

Test Project Name My first project

Test Plan Name My first test plan

Build Name examples-$BUILD_NUMBER

Custom Fields Java Class

Key Custom Field Java Class

Single Build Steps Add an Invoke top-level Maven targets build step,

and as goals use test -DsuiteXmlFiles=suite.xml

Before iterating all test cases Build Steps Leave it the way it is

Iterative Test Build Steps Leave it the way it is

After iterating all test cases Build Steps Leave it the way it is

JUnit Report Files Pattern Leave it blank

TestNG Report Files Pattern target/**/testng-results.xml

TAP Report Files Pattern Leave it blank

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 25

Save your job.

5.4 Explaining the Job configuration parameters

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 26

TestLink Version

This is the name of your TestLink installation in Jenkins global configuration.

Test Project Name

This is the name of your Test Project in TestLink. You can use environment variables in this field.

Test Plan name

This is the name of your Test Plan in TestLink. You can use environment variables in this field.

Build Name

This is the name of your Build in TestLink. You can use environment variables in this field.

Custom fields

This is a comma separated list of Custom Fields in TestLink. Only the custom fields present here are retrieved

from TestLink.

Key Custom Field

This is the custom field used by the plug-in to link a test case in TestLink with your test results. This custom

field must exist in the list of custom fields.

Single Build Steps

These Build Steps are executed only once in the job execution.

Before iterating all test cases Build Steps

These Build Steps are executed before iterating the automated test cases retrieved from TestLink.

Iterative Test Build Steps

These Build Steps are executed iteratively for each test case retrieved from TestLink. For these Build Steps, a

set of environment variables are available. We will discuss more about them soon.

After iterating all test cases Build Steps

These Build Steps are executed after iterating the automated test cases retrieved from TestLink.

JUnit, TestNG and TAP report files patterns.

The plug-in uses these patterns to find test results of your tests execution (single test command or iterative).

You can use multiple patterns at once, but it may lead to inconsistencies in your test results in TestLink.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 27

Transactional execution?

If this option is marked and any test fails, all remaining tests will be marked as Blocked in TestLink.

Failed tests mark build as failure

If this option is marked and any failed test found by the plug-in, your Build in Jenkins will be marked as failure.

Environment variables

The plug-in retrieves all the information from TestLink for your Test Project, Test Plan, Build and automated

Test Cases. You can then use any of this information to execute your tests. Jenkins itself provides the

Environment Variables, plus Build Environment Variables (such as BUILD_ID, which holds the date time of

your job).

The plug-in injects the information retrieved from TestLink as extra environment variables. This way you can

use the value of the Java class custom field value that you created in Chapter 4, TestLink Configuration in any

of your iterative Build Steps. Below you can find an example of how to execute a single test with Maven and

one of these environment variables.

mvn test -Dtest=$TESTLINK_TESTCASE_JAVA_CLASS

As you can see, our test command uses the Java class custom field value to specify the name of the test to

Maven (Maven Surefire Plug-in, actually). Below you will find a list with the information that the plug-in

makes available for your job configuration. As custom fields names may vary, the strategy used is capitalize

the custom field name, replace spaces with _ and append it to TESTLINK_TESTCASE_, which represents

information of a Test Case in TestLink.

• TESTLINK_TESTCASE_ID

• TESTLINK_TESTCASE_NAME

• TESTLINK_TESTCASE_TESTPROJECTID

• TESTLINK_TESTCASE_AUTHOR

• TESTLINK_TESTCASE_SUMMARY

• TESTLINK_BUILD_NAME

• TESTLINK_TESTPLAN_NAME

• TESTLINK_TESTCASE_$CUSTOM_FIELD_NAME

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 28

6. Executing Automated Test Cases

Now that everything is configured it is time to execute our automated test cases. Let's go back to the main

screen in Jenkins. Click on your job and trigger your job execution by clicking on Build Now .

Once your job execution is completed, refresh your current screen either by pressing F5 or by clicking over the

build name. The following screen must appear, showing a graph with the test results.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 29

You can find more information on your tests by clicking on Test Results or on your build under Build History.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 30

Everything seems to be right in Jenkins, let's go back to TestLink and click on Test execution option in the top

menu. It will bring a screen showing the result of your test execution.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 31

You can see more information about the execution of your tests by clicking over it on the left tree. Notice

that by default the plug-in uploads the test result file. In this case, as we are using TestNG, it uploaded testng-

results.xml. It is useful as you can see what happened in your tests, e.g.: an exception stack trace.

Explore the reports available in TestLink to see the results of your tests by different perspectives.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 32

7. Strategies to find Test Results
After your automated tests are executed the plug-in has to look for Test Results. This way it will know whether

an automated test was executed correctly or not and then it can update the test execution status in TestLink.

Jenkins TestLink Plug-in uses three strategies to find Test Results: TAP, TestNG and JUnit. All these strategies

use a key custom field to associate a test result in Jenkins with an automated test case in TestLink.

7.1 JUnit

TestLink plug-in scans the JUnit test results twice. The first time it matches the key custom field value against

the JUnit suite name, and in its second turn it matches the key custom field value against the JUnit class name

or test name.

Every time the plug-in finds a pair that matches (be it in a JUnit suite name or a JUnit class name or test name)

it looks for the test result status. In case of a test suite, if it has any errors or failures, then the status is set to

Failed, otherwise the status is set to Passed.

The reason why TestLink plug-in needs to use either JUnit XML element <testcase>’s attribute classname or

the attribute testname is that the JUnit format is used by many different tools, without having a de facto DTD or

XML Schema document. First the plug-in tries to use the JUnit XML element <testcase>'s attribute classname.

If it is empty, JUnit XML element <testcase>'s attribute testname.

<?xml version="1.0" encoding="UTF-8" ?>

<testsuite failures="1" time="0.078" errors="0" skipped="0" tests="1" name="A Suite">

 <testcase time="0" classname="tcA" name="testVoid">

 <failure type="junit.framework.AssertionFailedError" message="null">junit....</failure>

 </testcase>

 <testcase time="0" classname="tcB" name="testVoid" />

 <testcase time="0" classname="tcC" name="testVoid" />

 <testcase time="0" name="nameA" />

 <testcase time="0" name="nameB" />

</testsuite>

In the example above, we have a test suite which failed, and five test cases, where only one failed. Let's suppose

you created this test suite to execute an automated test case from TestLink. This would mean that you have a

test case in TestLink with a custom field which value is A Suite (we assume you are using this custom field

as key in the job configuration). The plug-in, after scanning the test results, it will update your test execution

status to Failed in TestLink, because the test suite has failed.

Now, suppose you created many test cases for your automated test cases from TestLink, and tcB is the value

of your key custom field in TestLink. Then the plug-in will update the test case execution status to Passed,

as this test case hasn't failed.

7.2 TestNG

The strategy used for TestNG is quite similar to the JUnit one. The plug-in scans the test results twice, also

matching the key custom field value against the TestNG suite name and then against each TestNG class name.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 33

Every time the plug-in finds a pair that matches (be it in a TestNG suite name or a TestNG class name or test

name) it looks for the test result status. In case of a test suite, if its has any failures, then the status is set to

Failed, otherwise the status is set to Passed.

<testng-results>

 <reporter-output>

 </reporter-output>

 <suite name="Command line suite" duration-ms="0" started-at="2010-11-17T13:31:41Z" finished-at="2010-11-17T13:31:41Z">

 <groups>

 </groups>

 <test name="Command line test" duration-ms="0" started-at="2010-11-17T13:31:41Z" finished-at="2010-11-17T13:31:41Z">

 <class name="br.eti.kinoshita.Test">

 <test-method status="FAIL" signature="testVoid()" name="testVoid" duration-ms="0" started-at="2010-11-17T13:31:41Z" finished-at="2010-11-17T13:31:41Z">

 </test-method>

 </class>

 </test>

 </suite>

</testng-results>

In the above example, we have a test suite named Command line suite, and a class which name is

br.eti.kinoshita.Test. You could have a key custom field in TestLink which value was the test suite name or

the class name. In this case, both situations would lead to the test execution status in TestLink being updated

to Failed. The TestNG test suite status is defined by its tests status, while the class status is defined by its

status attribute.

7.3 TAP - Test Anything Protocol

Lastly, we have TAP. Here the plug-in simply utilizes the TAP file name as option to match it against the key

custom field value. If the TAP file contains any Bail out!, not ok or TODO directive, then the test execution

status is updated to Failed in TestLink. If the TAP file contains any SKIP directive then the plug-in updates

the test execution status to Blocked. Otherwise, the plug-in considers that the test must be marked as Passed.

1..3

ok 1 testOk

ok 2

not ok 3

The example above shows a TAP Stream (that was stored in a file), which has three test results, and one of the

failed. Hence the test execution status will be updated as Failed in TestLink.

Using TAP, you can define the Platform (defined in TestLink) that you used for your tests or extra attachments

to be uploaded to TestLink. These topics are covered in Chapter 9, Appendix.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 34

8. Advantages of using Jenkins TestLink Plug-in

The plug-in is not intended to be a test automation solution, though it helps you to automate your tests. It is not

intended to manage your automated tests either, as this can be done in TestLink. The purpose of the plug-in is

integrate Jenkins, a continuous integration server, and TestLink, a test management tool.

There are three clear advantages in using this approach. First, if you are already using Jenkins as continuous

integration server and TestLink as test management tool, then you won't have another tool to worry about.

Simply install the plug-in and then DevOps will keep working in Jenkins, testers will keep working in TestLink

and your boss will be more than happy to know that he won't need to buy another tool and training for an

automated tests management tool.

Secondly, it is language independent. You can run tests in PHP, Perl, Python, Java, Lua and even in C or C++.

The only limitation here is that you have to output your test results either in JUnit, TestNG or TAP.

And lastly, it is free. The team of the plug-in are contributors of TestLink, maintainers of the TestLink Java

API, and keep trying to fix the issues in Jenkins' JIRA [http://issues.jenkins-ci.org] as fast as they can. So if

you use the plug-in, send us your feedback, write in the plug-in Wiki about your case or buy us a beer.

http://issues.jenkins-ci.org
http://issues.jenkins-ci.org

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 35

9. Appendix

9.1 Adding attachments to your test results

Each test result file is automagically attached to its automated test case in TestLink. That is the default behavior

in the plug-in. You can extend it, only if you are using TAP. You will have to create a YAMLish following the

example below (it is important that you encode the file content in Base64).

1..2

ok 1

not ok 2 - br.eti.kinoshita.selenium.TestListVeterinarians#testGoogle

 extensions:

 Files:

 /tmp/screenshot3562328890173159732.png:

 File-Location: /tmp/screenshot3562328890173159732.png

 File-Title: screenshot3562328890173159732.png

 File-Description: Main page

 File-Size: 114542

 File-Name: screenshot3562328890173159732.png

 File-Content: "iVBORw0KGgoAAAANSUhEUgAAA+IAAAJqCAYAAACvjvpKAAAgAElEQVR4nOy9d1RU5/r3ff543+dZ\r\

 \n613v8zy/95RfjjkmFmwgVXrvvffee1PBjtKbCoJ0qaIodqMYe8EWwRo1atQkRmOixkTFAkYFvu8f\r\

 ...

 ...

 File-Type: image/png

An issue that wasn't solved yet is that if you are running your job in a distributed environment, then the plug-

in won't be able to find the attachments for your test result.

9.2 Using Platforms

TestLink has a very nice feature, Platforms. Useful specially if you have tests that run is some specific

environment and you use some logic (like pairwise) to choose what is going to be tested.

As well as attachments, the only way to use Platforms while integrating Jenkins and TestLink is using TAP.

You have to create a YAMLish entry like the following.

1..3

ok 1

ok 2

 extensions:

 TestLink:

 Platform: EC1

 ...

ok 3

As you can see above, the TAP Stream has the platform EC1. The plug-in scans a TAP Stream looking for this

entry structure in each test result and in the test plan.

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 36

9.3 Plug-in behavior in distributed environments

The calls to TestLink are executed in the master, as well as the graph generating and some Jelly back end

code. The rest, what includes executing Build Steps and looking for and parsing test results is executed in the

slave, if present.

9.4 How to use the plug-in with SSL or basic authentication?

In the global configuration of the plug-in, there is a Advanced button. Click on it and an extra option will be

shown, TestLink Java API Properties.

Click on the help icon on the right to see which options you can enable. They are used by testlink-java-api

[http://testlinkjavaapi.sf.net] to set properties in the connection.

Among the properties, you may have to set xmlrpc.basicUsername and xmlrpc.basicPassword with the

credentials used for basic authentication.

For SSL, there are guides available in the Internet showing how to add a certificate to the Java key store and

proceed with a SSL connection.

http://testlinkjavaapi.sf.net
http://testlinkjavaapi.sf.net

Jenkins TestLink Plug-in Tutorial

Jenkins TestLink Plug-in Tutorial 37

Bibliography
[JenkinsTestLink] Jenkins TestLink Plug-in [http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin].

Copyright © 2011 The Jenkins TestLink Plug-in team.

[JenkinsCI] Jenkins-CI [http://www.jenkins-ci.org/]. Copyright © 2011 Jenkins-CI.

[TestLink] TestLink [http://www.teamst.org/]. Copyright © 2011 TestLink Community.

[TestNG] TestNG [http://www.testng.org/]. Copyright © 2011 TestNG.

[JUnit] JUnit [http://www.junit.org/]. Copyright © 2011 JUnit.

[TAP] Test Anything Protocol Website [http://testanything.org/]. Copyright © 2011 Test Anything Protocol

Community.

[TAPWikipedia] Test Anything Protocol article in Wikipedia [http://en.wikipedia.org/wiki/

Test_Anything_Protocol]. Copyright © 2011 Wikipedia.

[YAMLorg] YAML.org [http://www.yaml.org]. Copyright © 2011 YAML.org.

http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/TestLink+Plugin
http://www.jenkins-ci.org/
http://www.jenkins-ci.org/
http://www.teamst.org/
http://www.teamst.org/
http://www.testng.org/
http://www.testng.org/
http://www.junit.org/
http://www.junit.org/
http://testanything.org/
http://testanything.org/
http://en.wikipedia.org/wiki/Test_Anything_Protocol
http://en.wikipedia.org/wiki/Test_Anything_Protocol
http://en.wikipedia.org/wiki/Test_Anything_Protocol
http://www.yaml.org
http://www.yaml.org

	Jenkins TestLink Plug-in Tutorial
	Table of Contents
	1. An Introduction to Jenkins
	2. An Introduction to TestLink
	3. Jenkins and TestLink Integration
	4. TestLink Configuration
	4.1 Installing TestLink
	4.2 Creating a Test Project
	4.3 Creating and assigning a Custom Field
	4.4 Specifying Test Suite and Test Cases
	4.5 Create a Test Plan and add the Test Cases

	5. Jenkins Configuration
	5.1 Installing Jenkins
	5.2 Installing and configuring Jenkins TestLink Plug-in
	5.3 Creating a job in Jenkins
	5.4 Explaining the Job configuration parameters
	TestLink Version
	Test Project Name
	Test Plan name
	Build Name
	Custom fields
	Key Custom Field
	Single Build Steps
	Before iterating all test cases Build Steps
	Iterative Test Build Steps
	After iterating all test cases Build Steps
	JUnit, TestNG and TAP report files patterns.
	Transactional execution?
	Failed tests mark build as failure
	Environment variables

	6. Executing Automated Test Cases
	7. Strategies to find Test Results
	7.1 JUnit
	7.2 TestNG
	7.3 TAP - Test Anything Protocol

	8. Advantages of using Jenkins TestLink Plug-in
	9. Appendix
	9.1 Adding attachments to your test results
	9.2 Using Platforms
	9.3 Plug-in behavior in distributed environments
	9.4 How to use the plug-in with SSL or basic authentication?

	Bibliography

